

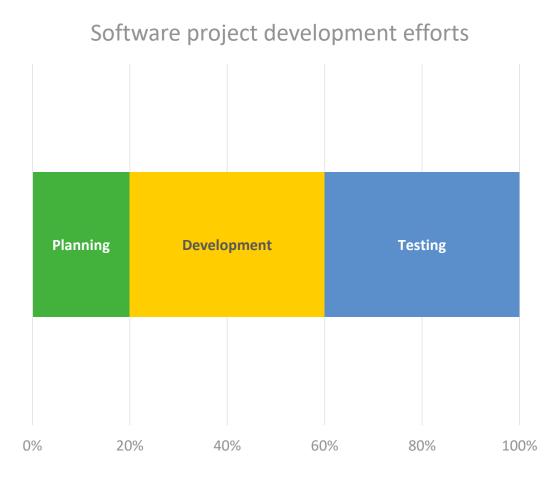
KI-basierte Generierung von Testfalldefinitionen aus natürlichsprachigen Requirements

HEICON – Global Engineering GmbH www.heicon-ulm.de | blog.heicon-ulm.de

Agenda

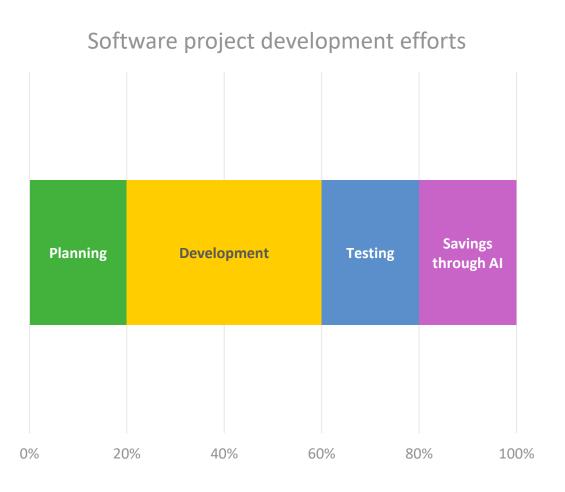
- Motivation
- Master's Thesis
 - 🕼 Setup & Data
 - Parameter Name Detection
 - Parameter Value Detection
- Summary
- Future Trends: Modern Requirements

HFIC


Motivation

Al supported test generation

The current state ...



- Much more effort is put into testing, then into requirement engineering
- Test cases are derived manually from requirements
- Poor traceability between test and requirements
- The advantages of requirements for software products are not realized

... with Al-support

ldea

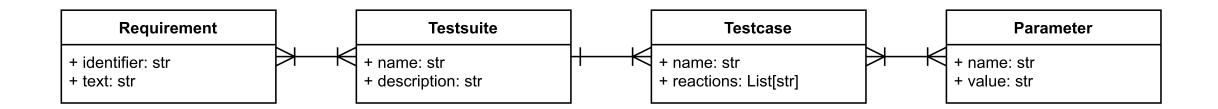
Al derives the tests from natural language requirements. This leads to significantly reduced development effort

Setup & Data

Master's Thesis

Partners

Raw Data Overview


Six projects provided by a renowned aerospace company

Requirements

- .docx files
- In form of text, tables and images
- 6500 requirements

Test specifications

- .cte files
- Parsable by using a grammar
- 🗧 ~ 4000 testsuites
- 🞏 ~ 9000 unique testcases

Parameter Name Detection

Master's Thesis

Data Labeling

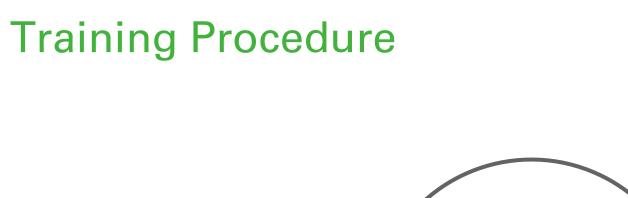
If the toothbrush's battery level drops below 10%, the toothbrush shall activate the energy-saving mode.

Data Labeling

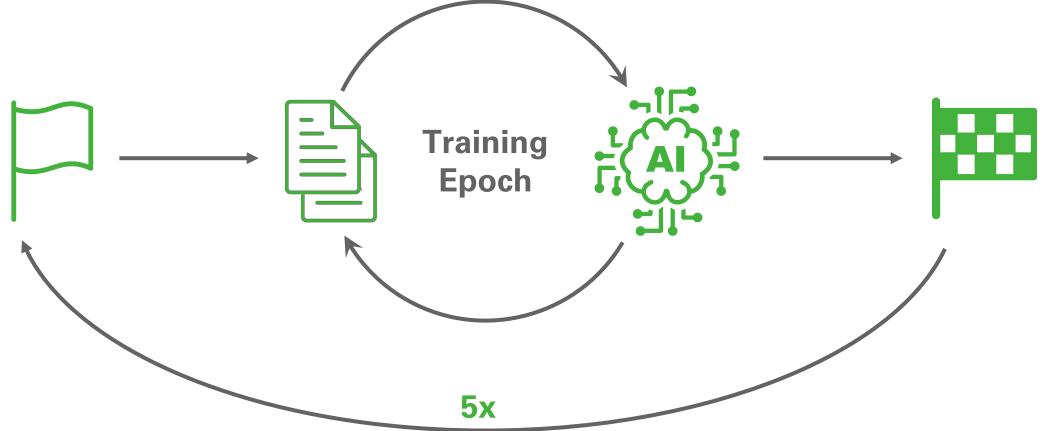
If the toothbrush's **battery level** drops below 10%, the toothbrush shall activate the **energy-saving mode**.

If the toothbrush's battery level drops below 10%, the

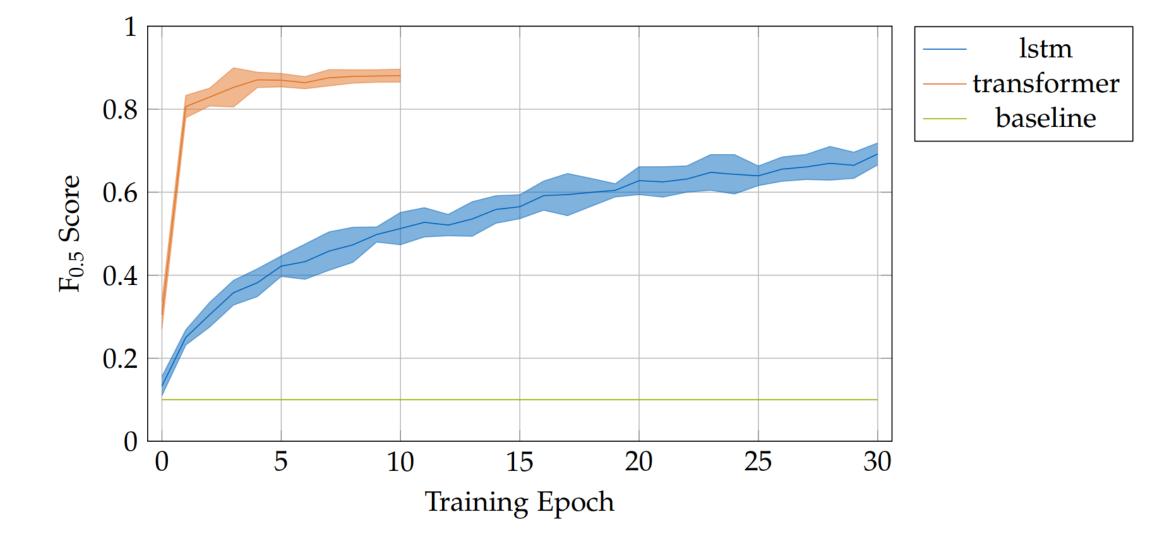
toothbrush shall activate the energy-saving mode.

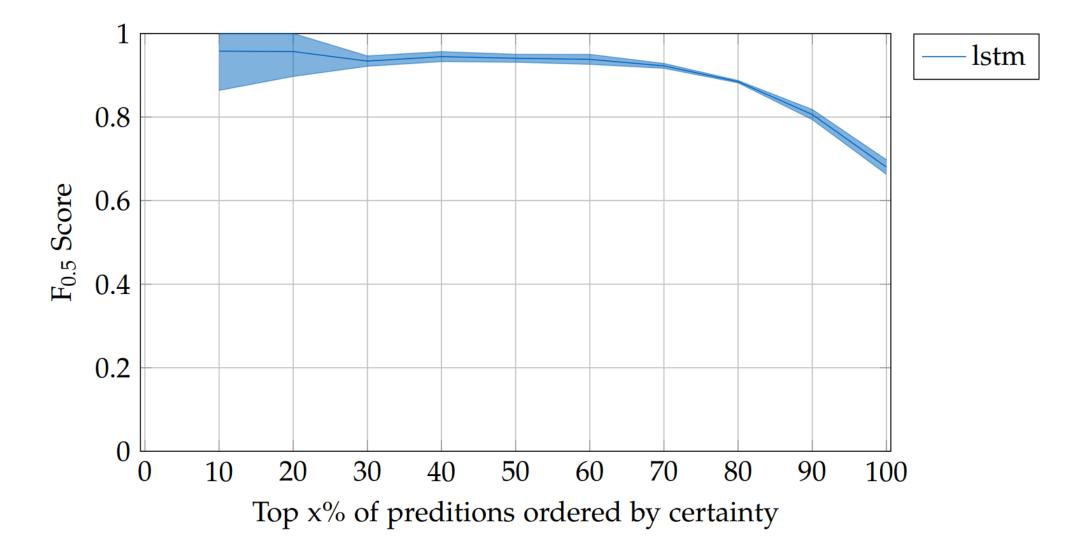


Data Labeling


lf	the	tooth	brush	'S	battery	level	drops	below		10	%,	the
0	0	0	0	0	1	1	0	0	0	0	0	0

tooth	brush	shall	activate	the	energy	-saving	mode	•
0	0	0	0	0	1	1	1	0




Networks Performance

Experiment – Certainty

Parameter Value Detection

Master's Thesis

If the toothbrush's **battery level** drops below 10%, the toothbrush shall activate the **energy-saving mode**.

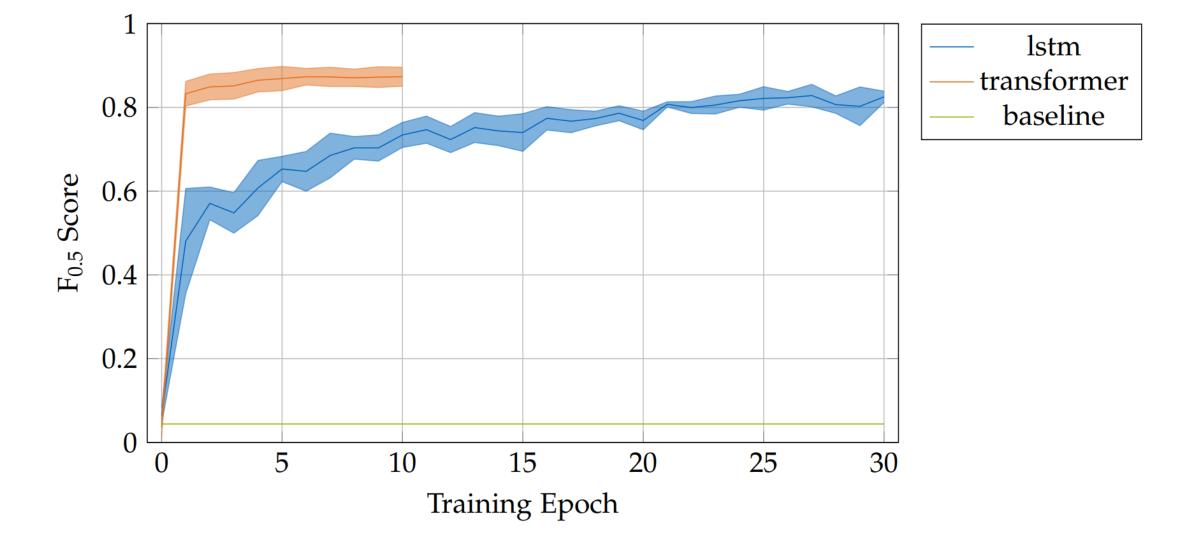
© Heicon – Global Engineering GmbH

Parameter Value Detection

If the toothbrush's **battery level** drops <u>below 10%</u>, the toothbrush shall <u>activate</u> the **energy-saving mode**.

lf	the	tooth	brush	'S	battery	level	drops	below	_	<u>10</u>	<u>%,</u>	the
0	0	0	0	0	0	0	0	1	1	1	1	0

tooth	brush	shall	<u>activate</u>	the	energy	-saving	mode	•
0	0	0	1	0	0	0	0	0



lf	the	tooth	brush	'S	battery	level	drops	below	_	<u>10</u>	<u>%,</u>	the
0	0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	1	

tooth	brush	shall	<u>activate</u>	the	energy	-saving	mode	•
0	0	0	0	0	1	1	1	0
0	0	0	1	0	0	0	0	0

Networks Performance

Summary

Al supported test generation

Summary

- Master Thesis could demonstrate proof of concept with respect to identify the required data in individual requirements
- A first step in usage the technology can be an analysis tool which highlights weaknesses in requirements
- Different AI algorithms are required to extract the information from natural language, tables and graphs

Topics for further investigations:

- Deriving test scenarios from the data, applying techniques like equivalence class and boundary value testing
- *©* Getting enough high quality requirements to train the AI models to avoid biased results

"It will be worth continuing to work on this topic"

- Vector Informatik GmbH -

Future Trends

Example: Modern Requirements & Copilot

Modern Requirements: Analysis

HEICON

5547 If the toothbrush's battery level drops below 10%, the toothbrush shall activate the energy-saving mode.

Analyse Title, Description

•

Factor	Rating (1- 10)	Reasons for Rating	Suggested Improvement
Clear	8	The requirement is mostly clear but could specify what is meant by "energy-saving mode".	Specify what functionalities are reduced or turned off in energy-saving mode.
Concise	9	The requirement is concise, with no unnecessary words.	Not applicable, as the requirement is already concise.
Complete	6	The requirement does not specify what happens when the battery is recharged above 10%.	Add information about the behavior of the toothbrush once the battery level is back above 10%.
Consistent	10	The requirement uses consistent terminology and is in line with standard requirement formats.	Not applicable, as the requirement is already consistent.
Correct	9	The requirement is technically feasible and relevant to the product's function.	Verify with technical team to ensure 10% is the optimal threshold for activating energy-saving mode.
Concrete	7	The requirement is somewhat vague about what "energy-saving mode" entails.	Define specifically what changes occur in energy-saving mode, such as reduced vibration speed or disabling certain features.

Overall Quality Score Calculation: To calculate the overall quality score, we take the average of the individual ratings: $(8 + 9 + 6 + 10 + 9 + 7) / 6 = 49 / 6 \approx 8.17$ ### Summary of Findings and Recommendations: The requirement for activating the energy-saving mode on the toothbrush when the battery level drops below 10% is generally well-formulated, scoring an overall quality score of approximately 8.17 out of 10. The requirement is clear, concise, consistent, and correct, indicating a strong

Done

Modern Requirements: Testcases

Given Input Title, Description		\sim	
Select all Verify activation of energy-saving mode when battery level is 9% Test energy-saving mode functionality when battery level is 5% Check if energy-saving mode is disabled when battery level is above 10%	Ve	scription rify activation of energy-saving mode when b st Steps	attery level is 9%
Assess impact of energy-saving mode on toothbrush performance Validate battery level monitoring accuracy	Ste 1	epAction Set the battery level to 9% and trigger the	Expected Results The energy-saving mode should be successfully
Evaluate energy consumption in energy-saving mode Examine battery level threshold for activating energy-saving mode Confirm energy-saving mode activation notification to user	2	energy-saving mode activation process Monitor the device behavior in energy- saving mode to ensure functionality is optimized	activated when the battery level reaches 9% The device should exhibit reduced power consumption and optimized performance while in energy-saving mode
Audit energy-saving mode behavior during charging Ensure energy-saving mode does not affect toothbrush functionality			

HEICON Global Engineering

Modern Requirements & Copilot

HEICON – Global Engineering GmbH

Member of: BodenseeAlRea, ASQF, Embedded4You

Contact

Martin Heininger Dipl.-Ing. Electrical Engineering

Phone: +49 7353 981781 Mobile: +49 176 24 73 99 60 <u>martin.heininger@heicon-ulm.de</u> Contact

August Weiß Information Systems, M. Sc.

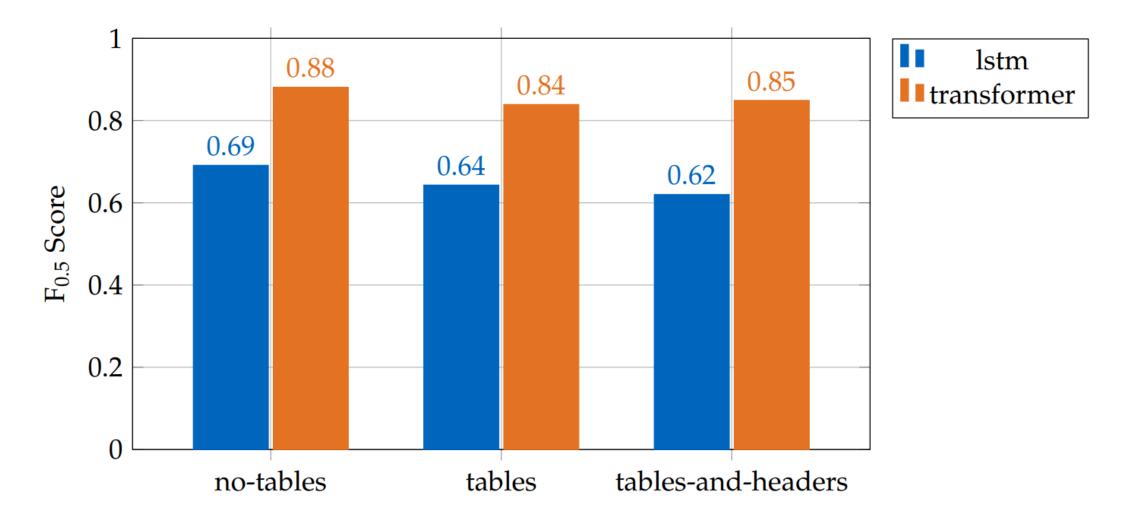
Mobile: +49 151 40 04 49 25 august.weiss@heicon-ulm.de Offices

In der Neuen Welt 8 87700 Memmingen

Kreuzweg 22 88477 Schwendi

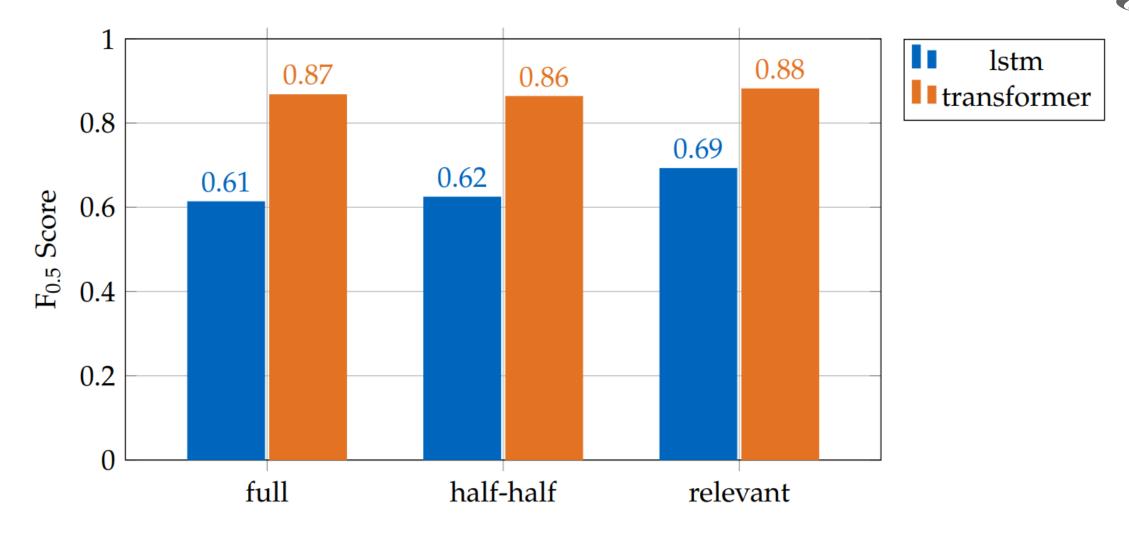
Detailed Results – Parameter Name Detection

	Baseline	LSTM	BERT
F _{0.5}	.100	.692	.881
Accuracy	.818	.943	.935
Precision	.100	.667	.877
Recall	.099	.815	.899
s/epoch	-	3.76	16.8



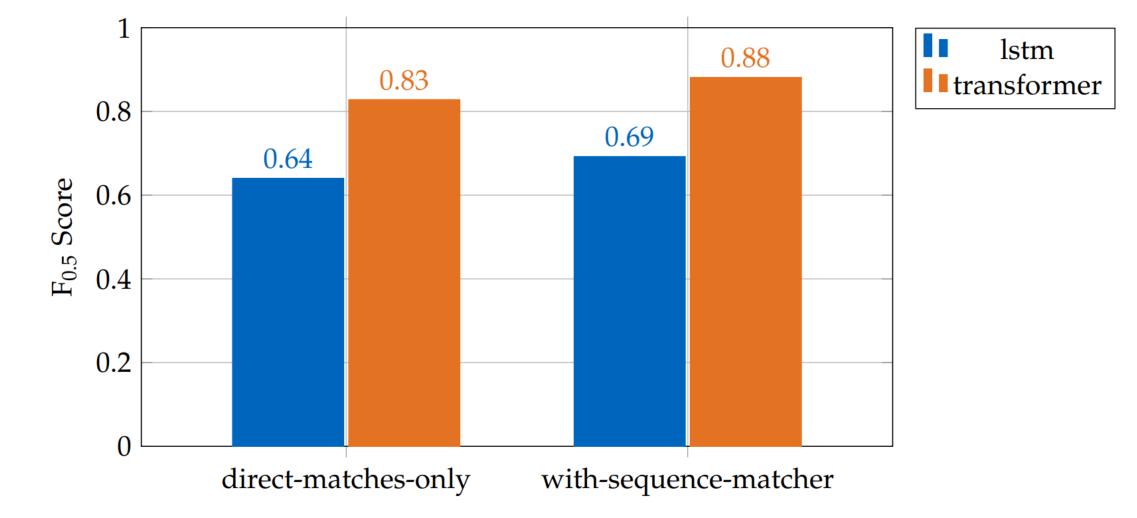
Detailed Results – Parameter Value Detection

	Baseline	LSTM	BERT
F _{0.5}	.044	.825	.873
Accuracy	.917	.988	.993
Precision	.044	.795	.880
Recall	.044	.975	.847
s/epoch	-	11.9	44.3


Experiment – Tables

Dataset	Positives	Negatives	Share positives
No tables	7013	62 364	10.1%
Tables	8202	85 850	8.7%
Tables and headers	8422	100 209	7.8%

Experiment – Imbalance


Experiment – Imbalance

Sample-wise	Positives	Negatives	Share positives
Full	1561	1887	45%
Half-half	1561	1561	50%
Relevant	1561	0	100%

Token-wise	Positives	Negatives	Share positives
Full	7013	115 504	5.7%
Half-half	7013	107 174	6.1%
Relevant	7013	62364	10.1%

Experiment – Sequence Matcher

HEICON Global Engineering

Experiment – Sequence Matcher

	Direct matches only	With sequence matcher
Positive tokens	4827	7013
Negative tokens	54 151	62 364
Relevant requirements	1286	1561

You

Please analyze the following requirement and create a complete test specification for it:

If the industrial oven's temperature exceeds 200°C, the coolant system shall be activated to prevent overheating.

1. Introduction:

1.1 Purpose: Verify that the coolant system is activated when the industrial oven's temperature exceeds 200°C to prevent overheating.

1.2 Scope: The testing will cover scenarios where the oven's temperature crosses the 200°C threshold.

2. Test Scenarios:

2.1 Oven Temperature Below 200°C:

- Verify that the coolant system remains inactive when the oven's temperature is below or equal to 200°C.
- Expected Outcome: Coolant system remains inactive.

2.2 Oven Temperature Exceeds 200°C:

- ℰ Increase the oven temperature beyond 200°C.
- Expected Outcome: Coolant system should be activated.

2.3 Continuous Monitoring:

- Econtinuously monitor the oven temperature as it fluctuates around the 200°C threshold.
- Expected Outcome: Coolant system activates when the temperature exceeds 200°C.

3. Test Cases:

3.1 Oven Temperature Monitoring:

Set the oven temperature to 180°C.

Monitor temperature readings.

Expected Outcome: Coolant system remains inactive.

- **3.2 Temperature Exceeds 200°C:**
- Set the oven temperature to 210°C.
- ℰ Monitor temperature readings.

Expected Outcome: Coolant system activates within a reasonable time.

3.3 Gradual Temperature Increase:

- ∉ Gradually increase the oven temperature from 180°C to 220°C.
- Monitor temperature readings continuously.
- Expected Outcome: Coolant system activates when the temperature surpasses 200°C.

3.4 Temperature Fluctuations:

- Introduce fluctuations around the 200°C threshold.
- Expected Outcome: Coolant system activates when the temperature exceeds 200°C during fluctuations.

4. Environmental Conditions:

4.1 Ambient Temperature:

- Test the system under varying ambient temperatures.
- Expected Outcome: The system reacts appropriately under different environmental conditions.

4.2 System Load:

- Test the system under different load conditions.
- Expected Outcome: The system remains effective in preventing overheating.

- **5. Performance Testing:**
- **5.1 Response Time:**
- Measure the response time from temperature exceeding 200°C to coolant system activation.
- Expected Outcome: Response time within acceptable limits.

- 6. Documentation:
- **6.1 Test Results**:
- Record and document the results of each test case.
- Include details on whether the coolant system activated or remained inactive.

6.2 Issues and Observations:

- © Document any issues or unexpected observations during testing.
- Include details on system behavior, error messages, or anomalies.

7. Conclusion:

Summarize the test results and ensure that the temperature control system meets the specified requirements.