
Digital Engineering

Anforderungen im Wandel –
oder kommen die Anforderungen
in Zukunft von der KI und aus
Modellen?

Peter Schedl
Program Manager
IBM Engineering Lifecycle Management
peter.schedl@de.ibm.com

IBM Engineering / © 2024 IBM Corporation

Questions raised during this Conference

IBM Engineering / © 2024 IBM Corporation

Is MBSE (or UML) dead?

Warum modellbasiert arbeiten?

Brauchen wir noch Requirements Engineers (oder reicht KI) ?

Wie kann Generative KI das Requirements Engineering sinnvoll unterstützen?

KI als Co-Pilot, Chief Engineer oder Chaos?

Was sind die Risiken von KI?

ChatGPT, ChatGPT, ChatGPT…?

Questions to be answered

IBM Engineering / © 2024 IBM Corporation

• What is Requirements Engineering ?

• Does AI help ?

• Can AI generate Requirements ?

• Does Modeling help ?

• What is MBSE and how does it relate to Requirements Engineering ?

• What is a MBSE best-practice?

• Can AI generate Models ?

• Do Models generate Requirements ?

Requirements Definition and Management

Requirements Engineering involves:

– Requirements elicitation – gathering requirements from stakeholders/customers

– Requirements analysis and negotiation – check clarity, completeness, resolve issues

– Requirements specification – document with text, maybe with use cases and scenarios

– Functional analysis

– Requirements validation

– Requirements management – continuous activity,
traceability, change handling

IBM Engineering / © 2024 IBM Corporation

Requirements Challenges

Misunderstood requirements by stakeholders and engineers

Poorly expressed requirements

Misunderstanding or omission by development

Missed test coverage

Requirement change impact misunderstandings

Little reuse

IBM Engineering / © 2024 IBM Corporation

RQA: AI based quality checker

IBM Engineering Requirements Quality Assistant

IBM Engineering / © 2024 IBM Corporation

Watsonx capability embedded inside DOORS & DOORS Next introduced early 2019

Removes risk and ambiguity in the requirements authoring phase out-of-the-box by using AI

Authors receive coaching from Watson to improve the quality of the requirement as it is being written

Pre-trained with the INCOSE Guidelines for Writing Good Requirements

Examples:
– Unclear actor or user
– Compound requirement
– Negative requirements
– Escape clause
– Missing units or tolerances
– Ambiguity
– Passive
– Incomplete requirements
– Unspecific quantities

Fine-tuning

Prompting

Prompt
Tuning

1

2

3

4 Training from
scratch

watsonx.ai

watsonx.governance

watsonx.data

The platform
for AI and data

IBM watsonx

Scale and
accelerate the
impact of AI
with trusted data.

Leverage foundation
models to automate data
search, discovery, and
linking in watsonx.data

Leverage governed enterprise
data in watsonx.data to
seamlessly train or fine-tune
foundation models

Enable fine-tuned models to be
managed through market
leading governance and lifecycle
management capabilities

IBM Engineering / © 2024 IBM Corporation

watsonx.ai

Train, validate, tune
and deploy AI models

watsonx.data

Scale workloads,
for all your data,
anywhere

watsonx.governance

Enable responsible,
transparent and
explainable AI workflows

IBM watsonx – Write Good Requirements

IBM Engineering / © 2024 IBM Corporation
Using the granite-13b-chat-v2 LLM

https://www.ibm.com/watsonx

IBM watsonx – Write Good Requirements

IBM Engineering / © 2024 IBM Corporation

IBM watsonx – Write Good Requirements

IBM Engineering / © 2024 IBM Corporation

Requirements Challenges

Misunderstood requirements by stakeholders and engineers

Poorly expressed requirements

Misunderstanding or omission by development

Missed test coverage

Requirement change impact misunderstandings

Little reuse

Complexity is the biggest challenge facing organizations today!

“Ok. That’s what we need to do:
 Thread A will pass event X to thread B and that will

change B’s state to Running from what it was before
which was Idle. When B changes to Running it will
send back an event Y to A and then wait for 2 second
and then go back to Idle. Thread A will have started
in Idle also and will go to Run after B sends back
event Z which happens after the 2 seconds before
going to Idle. All this should happen in less then 5
seconds.”

IBM Engineering / © 2024 IBM Corporation

RQA: AI based quality checker

Modeling in Requirements Engineering

Requirements Engineering involves:

– Requirements elicitation

– Requirements analysis and negotiation

– Requirements specification

– Functional analysis

– Requirements validation

– Requirements management

Past

Specifications

Interface requirements

System design

Analysis & trade-off

Test plans

Moving from manual and textual methods to an automated, visual approach

Future

UserUser

AdminAdmin AccessPointAccessPoint

CameraCamera

Security System

Uc3ConfigureSecurity
System

Uc2Control Exit

Uc1Control Entry

readSecurityCard

User

validateSecurityCard

[CardStatus Valid][CardStatus Valid]

scanBiometricData

User [else][else]

authenticateBiometricData

[else]

flagBiometricScanFailure

[else]

[else][else]

[else]

flagSecurityCardFailure

[else]

[else][else]

[BiometricData Authenticated]

logEntryData

[BiometricData Authenticated]

[BsFailCount==3]

disableUserAccount

Admin

[BsFailCount==3]

[ScFailCount==3][ScFailCount==3]

displayCardStatus

[Timeout BiometricScan][Timeout BiometricScan]

displayAuthenticationStatus

logAccountData

alarm

unlockAccesspoint
«MessageAction»

AccessPoint

lockAccesspoint
«MessageAction»

AccessPoint [Timeout Unlocked][Timeout Unlocked]resetAlarm

Admin

[else][else]
takePicture

«MessageAction»

Camera

[First Request][First Request]

User CameraAccessPointUc_Uc1ControlEntry

message_0()
readSecurityCard()

message_1()
validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

message_2()
scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

message_3()

message_4()

message_5()

message_6()

message_0()
readSecurityCard()

message_1()
validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

message_2()
scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

message_3()

message_4()

message_5()

message_6()

Uc1ControlEntryCtrl

WaitForEntryRequest

UnlockingAndLockingAccessPoint

reqTakeSnapshot to pCamera

reqReadSecurityCard/
readSecurityCard();

reqProcessAlert("User Access Disabled") to pAdmin

ProcessingSecurityCardData

Fail3Times

ProcessingBiometricData

Failed3TimesBsTimeoutAuthenticated

[CardStatus=="Valid"]

A

evAccessPointLocked

A

/disableUserAccount();
logAccountData();

A

WaitForResetAlarm

reqResetAlarm/
resetAlarm();

reqReadSecurityCard/
readSecurityCard();

[CardStatus=="Valid"]

evAccessPointLocked

/disableUserAccount();
logAccountData();

reqResetAlarm/
resetAlarm();

“Ok. That’s what we need to do:
 Thread A will pass event X to thread B and that will

change B’s state to Running from what it was before
which was Idle. When B changes to Running it will
send back an event Y to A and then wait for 2 second
and then go back to Idle. Thread A will have started
in Idle also and will go to Run after B sends back
event Z which happens after the 2 seconds before
going to Idle. All this should happen in less then 5
seconds.”

IBM Engineering / © 2024 IBM Corporation

Why Modeling?

Manage complexity
– Complicated applications need a visual plan

Simplify and abstract ! essential aspects of a system
– Increase understanding of requirements

Enhance communication
– Common language promotes common understanding across disciplines

Reduce risk
– Model execution increases knowledge and reduces uncertainty and risk

Provide traceability
– Models document what you have done
IBM Engineering / © 2024 IBM Corporation

Modeling in Requirements Engineering

Requirements Engineering involves:

– Requirements elicitation

– Requirements analysis and negotiation

– Requirements specification – use cases and scenarios for describing user interactions

– Functional analysis – functional flows, interface definition, documented rationale

– Requirements validation – testing of requirements through model execution

– Requirements management
2 Functional Requirements

2.1 Power car

2.1.1 Move car

2.1.1.1 Move forwards

The car shall be able to move forwards at all speeds from 0 to 200 kilometers per hour on
standard flat roads with winds of 0 kilometers per hour, w ith 180 BHP.

2.1.1.2 Move backwards

The car shall be able to move backwards to a maximum speed of 20 Kilometers per hour on
standard flat roads with winds of 0 kilometers per hour, w ith 180 BHP.

2.1.2 Accelerate car

The car shall be able to accelerate from 0 to 100 Kilometers per hour in 10 seconds on
standard flat roads with winds of 0 kilometers per hour.

The car shall be able to accelerate from 100 to 150 kilometers per hour at a rate of 5
kilometers per second on standard flat roads with winds of 0 kilometers per hour.

The car shall be able to accelerate from 150 to 200 kilometers per hour at a rate of 3
kilometers per second on standard flat roads with winds of 0 kilometers per hour.

2.2 Control car

2.2.1 Switch on car

The car shall be able to discrim inate which authorized people shall be able to switch on and
operate the car.

2.2.2 Control speed

The car shall have a foot mechanism to control the speed of the car.

The speed control shall be infinitely variable from zero to maximum speed.

IBM Engineering / © 2024 IBM Corporation

Improve Requirements specification by just adding “Diagrams”

IBM Engineering / © 2024 IBM Corporation

Fully integrated (like textual requirement)

Offers rich notations

Not a formal model

IBM’s Model Based Systems Engineering (MBSE) Solution

MBSE is a standards based Systems Engineering practice that incorporates:

– Modeling language – SysML

– Modeling method – Harmony Systems Engineering Practices

– Modeling tool – Rhapsody for Systems Engineers & Rhapsody Model Manager

– Requirements management tool – DOORS Next Generation

 DOORS Rhapsody

implements

The Model governs

leverages

uses

describes

manages

HarmonyMBE
Practices

IBM Engineering / © 2024 IBM Corporation

HarmonyMBE Best-Practice provides Guidance & Automation

IBM Engineering / © 2024 IBM Corporation

Model Based Systems Engineering complements
traditional requirements analysis techniques

– during Requirements Analysis, we organize
requirements into functional groups (use cases)

– during Functional Analysis, we identify system
functions and explore the system’s dynamic
behavior using activity diagrams and model
execution

– during Architectural Design, operations are
allocated to decomposed Logical Architecture

– Finally either direct Hand-Off to the engineering
teams or first map to a Physical Architecture

– Missing, conflicting and derived Requirements
are identified

IBM watsonx – Generate a Model

IBM Engineering / © 2024 IBM Corporation

IBM watsonx – Generate a Model

IBM Engineering / © 2024 IBM Corporation

HarmonyMBE: Requirements Analysis & Functional Analysis:
Results

IBM Engineering / © 2024 IBM Corporation

Requirements allocated to
Use Cases

System Context defined

Functional Flows defined

Test Scenarios captured

Examples - How Modelling helps understanding and identifing
Requirements

IBM Engineering / © 2024 IBM Corporation

Shouldn’t actor X be involved in UC1 as well and how? What would be the IF?

Block2 needs input A but it’s not created anywhere

After seeing the scenario the stakeholder identified missing preconditions

Defining the system bahvior conflicting requirements were identified

Analyzing the operational flow missing options were identified requiring addtl. Input

Executing the model unvieled wrong behavior based on unclear, missing requirements

…

Certain diagrams become part of the spec.

Examples - Can AI do the Job?

IBM Engineering / © 2024 IBM Corporation Stable Diffusion w prompt:
People looking at computer with requirements

Smart DOORS Next Copilot for Requirements Engineers PoC

IBM Engineering / © 2024 IBM Corporation

© 2024 IBM Corporation

vs.
GenAI alone cannot replace engineers,
but engineers equipped with GenAI will

surpass those without it.

The Future ?

IBM Engineering / © 2024 IBM Corporation

Questions answered

IBM Engineering / © 2024 IBM Corporation

• What is Requirements Engineering ?

• Does AI help ?

• Can AI generate Requirements ?

• Does Modeling help ?

• What is MBSE and how does it relate to Requirements Engineering ?

• What is a MBSE best-practice?

• Can AI generate Models ?

• Do Models generate Requirements ?

✔

✔

✔

✔

✔

✔

Thank You

© Copyright IBM Corporation 2024. All rights reserved. The information contained in these materials is provided for informational purposes only, and
is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to change or
withdrawal, and represent only goals and objectives. IBM, the IBM logo, and ibm.com are trademarks of IBM Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available at
Copyright and trademark information.

IBM Engineering / © 2024 IBM Corporation

Peter Schedl
peter.schedl@de.ibm.com

Further information:
IBM Engineering Lifecycle Management Automotive Compliance
IBM Engineering Lifecycle Management Overview
IBM Engineering Lifecycle Management Interactive Tour

Upcoming Events
Automotive Day Conference – München
TdSE – Leipzig

https://www.ibm.com/legal/copytrade
https://www.ibm.com/products/engineering-automotive-compliance
https://www.ibm.com/products/engineering-lifecycle-management
https://www.ibm.com/internet-of-things/learn/elm-interactive/
https://www.sodiuswillert.com/de/blog/automotive-day-conference
https://www.tdse.org/

