Digital Engineering

Anforderungen im Wandel -
oder kommen die Anforderungen
in Zukunft von der KI und aus
Modellen?

v/

: Peter Schedl
- Program Manager
"/ IBM Engineering Lifecycle Management

peter.schedl@de.ibm.com

[
IHTHL
i

watsonx’

Questions raised during this Conference

Is MBSE (or UML) dead?

Warum modellbasiert arbeiten?

Brauchen wir noch Requirements Engineers (oder reicht KI) ?

Wie kann Generative KI das Requirements Engineering sinnvoll unterstiitzen?
KI als Co-Pilot, Chief Engineer oder Chaos?

Was sind die Risiken von KI?

ChatGPT, ChatGPT, ChatGPT...?

IBM Engineering / © 2024 IBM Corporation

Questions to be answered

» What is Requirements Engineering ?
» DoesAlhelp?
* Can Al generate Requirements ?
* Does Modeling help ?
 What is MBSE and how does it relate to Requirements Engineering ?
 What is a MBSE best-practice?
* Can Al generate Models ?

» Do Models generate Requirements ?

IBM Engineering / © 2024 IBM Corporation

Requirements Definition and Management

Requirements Engineering involves:

— Requirements elicitation — gathering requirements from stakeholders/customers

— Requirements analysis and negotiation — check clarity, completeness, resolve issues

— Requirements specification — document with text, maybe with use cases and scenarios
— Functional analysis

— Requirements validation

— Requirements management — continuous activity,
traceability, change handling

Aviary Vision

IBM Engineering / © 2024 IBM Corporation

Requirements Challenges

Misunderstood requirements by stakeholders and engineers
Poorly expressed requirements B ROA: Al based quality checker
Misunderstanding or omission by development

Missed test coverage

Requirement change impact misunderstandings

Little reuse

IBM Engineering / © 2024 IBM Corporation

Quality scores (0 - 100)

2 artifacts sedected

72481The GPS system shall provide a clear perspective of the road. 80

Unclear term

Look for: clear

Hide details Teach Watson
This requirementincludes a term or phrase that makes the requirement unclear.
Effective requirements use specific and precise terms that have only one
interpretation. Replace vague and general terms with specific, descriptive terms
or rewrite the requirement with different wording to ensure that all phrases are
clear.

IBM Engineering Requirements Quality Assistant

Watsonx capability embedded inside DOORS & DOORS Next introduced early 2019
Removes risk and ambiguity in the requirements authoring phase out-of-the-box by using Al
Authors receive coaching from Watson to improve the quality of the requirement as it is being written

Pre-trained with the INCOSE Guidelines for Writing Good Requirements

—_— Examples:
INCOSE — Unclear actor or user
— Compound requirement
— Negative requirements
— [Escape clause
— Missing units or tolerances
— Ambiguity
- — Passive
— Incomplete requirements
— Unspecific quantities

IBM Engineering / © 2024 IBM Corporation

I B M WatSO nX Enable fine-tuned models to be

managed through market
leading governance and lifecycle
management capabilities

The platform
Leverage foundation
for Al and data models to automate data
search, discovery, and
linking in watsonx.data

Scale and
accelerate the
Impact of Al

with trusted data.

watsonx.governance

watsonx.data

Leverage governed enterprise
data in watsonx.data to
seamlessly train or fine-tune
foundation models

watsonx.data watsonx.ai
a Prompt
Tuning | Scale workloads, Train, validate, tune
for all your data, and deploy AI models
a Fine-tuning anywhere

Training from
scratch

IBM Engineering / © 2024 IBM Corporation

watsonx

Enterprise-ready generative
Al and data platform

watsonx.governance

Enable responsible,
transparent and
explainable AI workflows

IBM watsonx — Write Good Requireme.nts

.

Choose how you want to work x

Inchatr

https://www.ibm.com/watsonx

IBM Engineering / © 2024 IBM Corporation . X
Using the granite-13b-chat-v2 LLM

You: 02:43 PM

I B M How should requirements be written?
02:43 PM

Writing clear, concise, and comprehensive requirements is crucial for the success of any project. Here are some best

practices to consider when writing requirements:

1. Be specific: Use precise and unambiguous language to describe each requirement. Avoid vague terms and jargon.
Instead, provide clear definitions or examples to ensure understanding.

2. Use user-centric language: Frame requirements from the perspective of the end-users or stakeholders. This
helps ensure that the system meets their needs and expectations.

3. Prioritize requirements: Not all requirements are equally important. Rank them based on their importance and
dependencies to help guide development and ensure that critical features are delivered first.

4. Keep requirements atomic: Break down complex requirements into smaller, manageable pieces. This makes it
easier to understand, test, and validate each component independently.

5. Avoid unnecessary constraints: While it's important to define constraints, avoid limiting the solution space
unnecessarily. Instead, focus on enabling the development team to create a flexible and adaptable system.

6. Validate requirements: Verify requirements with stakeholders and users to ensure that they accurately reflect
their needs and expectations. Update requirements as needed based on feedback.

7. Traceability: Establish a traceability matrix to link requirements to design elements, test cases, and defects. This
helps ensure that requirements are being fulfilled throughout the development lifecycle.

8. Review and update requirements: Regularly review and update requirements to ensure that they remain relevant
and up-to-date. This helps prevent misunderstandings and ensures that the system continues to meet
stakeholder needs.

IBM Engineering / ©

By following these best practices, you can write clear and effective requirements that will guide your project to success.

IBM watsonx — Write Good Requirements

Here's an improved version of the requirement:
"The vehicle must come to a complete stop when an obstacle is detected within its vicinity."

This requirement is more specific, clear, and actionable. It specifies the action that the vehicle must take (come to a
complete stop) and the condition that triggers this action (obstacle detection). Additionally, it avoids using vague terms
or jargon, making it easier for stakeholders and developers to understand.

IBM Engineering / © 2024 IBM Corporation

Requirements Challenges

“Ok. That’s what we need to do:
Thread A will pass event X to thread B and that will

Misunderstood requirements by stakeholders and engineers o P G R R e (e e
) which was Idle. When B changes to Running it will
Poorly expressed requirements ‘ RQA: Al based qua“ty checker send back an event Y to A and then wait for 2 second

and then go back to Idle. Thread A will have started
in Idle also and will go to Run after B sends back

Misunderstanding or omission by development event Z which happens after the 2 seconds before
going to Idle. All this should happen in less then 5
Missed test coverage el

Requirement change impact misunderstandings

Little reuse

Complexity is the biggest challenge facing organizations today!

IBM Engineering / © 2024 IBM Corporation

Modeling in Requirements Engineering

“Ok. That’s what we need to do:
Thread A will pass event X to thread B and that will

Requirements Engineering involves: change B's - e
which was 1]

— Requirements elicitation send back ond
and then g - ed

- . .. in Idle alsc -

— Requirements analysis and negotiation event Z wk ' e
going to Id 5
seconds.” o

— Requirements specification
— Functional analysis Past

— Requirements validation

Specifications

. Interface requirements

— Requirements management
System

Analysis & trade-off

Test plans

IBM Engineering / © 2024 IBM Corporation . .
Moving from manual and textual methods to an automated, visual approach

Why Modeling?

Manage complexity
— Complicated applications need a visual plan

Simplify and abstract ! essential aspects of a system
— Increase understanding of requirements

Enhance communication
— Common language promotes common understanding across disciplines

Reduce risk
— Model execution increases knowledge and reduces uncertainty and risk

Provide traceability
— Models document what you have done

IBM Engineering / © 2024 IBM Corporation y

Modeling in Requirements Engineering

Requirements Engineering involves:

— Requirements elicitation

— Requirements analysis and negotiation

— Requirements specification — use cases and scenarios for describing user interactions
— Functional analysis - functional flows, interface definition, documented rationale

— Requirements validation - testing of requirements through model execution

eeeeeeeeeeeeee ~

— Requirements management

nnnnnnnnnn

\\\

IBM Engineering / © 2024 IBM Corporation

eeeeee

Improve Requirements specification by just adding “Diagrams”

. Vision
Fully integrated (like textual requirement) The Aviery i 3 system ofsystems consistng n 35 the Bird Feeder), 3 UAY (known as the Hum
Offers rich notations
2 X o P N\ ~
0
T

Bird Feeder

The Hummmngbird 3 small drone use for survediance with 3 short range and faght. It 1s nte
Not a formal model

IBM Engineering / © 2024 IBM Corporation

IBM’s Model Based Systems Engineering (MBSE) Solution

MBSE is a standards based Systems Engineering practice that incorporates:

— Modeling language — SysML

— Modeling method — Harmony Systems Engineering Practices

— Modeling tool — Rhapsody for Systems Engineers & Rhapsody Model Manager

— Requirements management tool — DOORS Next Generation

UL

efi <

describes The Model governs
implements * manages
leverages

IBM Engineering / © 2024 IBM Corporation DdaRS Rhap;c;dy

uses

HarmonyMBE
Practices

HarmonyMBE Best-Practice provides Guidance & Automation

Model Based Systems Engineering complements
om0 o o o Requiremerts
traditional requirements analysis techniques l
— during Requirements Analysis, we organize e System Conte
. . . System Requirements >
requirements into functional groups (use cases) System Use Casas & Actors
° ° 5 5 5 Use Cases
— during Functional Analysis, we identify system l W
functions and explore the system’s dynamic = Funcionsl Beheviour
. Updated System PQUreMents
behavior using activity diagrams and model e Bt e
execution l
Allocation
— during Architectural Design, operations are el [Aoecous Model Regasory
allocated to decomposed Logical Architecture st Oyl Fagiliosiont N
— Finally either direct Hand-Off to the engineering e
teams or first map to a Physical Architecture Mapging |
Sulysten Rogurone s
— Missing, conflicting and derived Requirements JTrvieal
are identified _ %
IBM Engineering / © 2024 IBM Corporation @

You: 02:47 PM

IBM i

How will a system model be generated from requirements?

02:47 PM

Generating a system model from requirements involves several steps. Here's a high-level overview of the process:

1. Analyze requirements: Begin by analyzing the requirements to identify the key components and relationships.
Look for patterns, constraints, and dependencies hetween requirements.

2. Define the system architecture: Based on the requirements, define the overall system architecture. This includes
identifying the main components, their interactions, and data flows.

3. Develop detailed designs: Create detailed designs for each component of the system. This includes specifying the
algorithms, data structures, interfaces, and other implementation details.

4, Generate model elements: From the detailed designs, generate model elements such as class diagrams,
sequence diagrams, and state diagrams. These models represent the structure, behavior, and constraints of the
system.

5. Integrate model elements: Combine the model elements into a single, cohesive system model. This shows how
the various components interact and how data flows through the system.

6. Validate the model: Validate the system model to ensure that it meets the requirements and that there are no
inconsistencies or errors.

7. Refine the model: Based on the validation results, refine the system model as needed. This may involve making
changes to the requirements, designs, or model elements.

8. Document the model: Document the system model in a clear and understandable manner. This includes providing
descriptions, attributes, and relationships for each model element.

By following these steps, you can generate a system model that accurately represents the requirements and design of

IBM Engineering / © 2

your system.

You: 02:50 PM

Define a system architecture for the requirement: The vehicle must come to a complete stop when an obstacle is
detected within its vicinity.

02:50 PM

Here's a high-level system architecture for the given requirement:

1. Sensor System: Responsible for detecting obstacles in the vehicle's vicinity. This could include cameras, lidar,
ultrasonic sensors, or other appropriate technologies.

2. Obstacle Detection Module: Within the Sensor System, this module is responsible for processing sensor data and
determining whether an obstacle has been detected.

3. Vehicle Control System: This system is responsible for controlling the vehicle's movement and stopping
mechanisms. It receives input from the Obstacle Detection Module and takes appropriate actions to stop the
vehicle.

4. Braking System: The braking system is responsible for bringing the vehicle to a complete stop. This could include
hydraulic brakes, electric brakes, or other suitable braking technologies.

5. Communication System: This system enables communication between the Obstacle Detection Module, Vehicle
Control System, and other vehicle systems. It could include CAN bus, Ethernet, or other appropriate
communication protocols.

This system architecture provides a high-level overview of the components and interactions required to meet the
requirement. However, it's important to note that the actual implementation may vary depending on the specific vehicle
IBM Engineer design, hardware, and software constraints.

HarmonyMBE: Requirements Analysis & Functional Analysis:

‘ . > Requirements allocated to
Requirements t e e Use Cases
Analysis S — 4
Functional Block
Actor 1 opt Actor 2 .
o2 System Context defined —
Functional s o View 4
Analysis pl -
Test Bench ,_("!\'__ Test Bench . .
{ yin<l Functional Flows defined
op2 p3
LOglC3| Scenario View
Architecture T =
= =:E Test Scenarios captured
3 reqAc2 |
—>1]
Physical - P op2 N
Architecture X P
IBM En-g};;;;ing/ ©20%

Examples - How Modelling helps understanding and identifing

Requirements

Shouldn’t actor X be involved in UC1 as well and how? What would be the IF?
Block2 needs input A but it’s not created anywhere

After seeing the scenario the stakeholder identified missing preconditions

Defining the system bahvior conflicting requirements were identified

Analyzing the operational flow missing options were identified requiring addtl. Input

Executing the model unvieled wrong behavior based on unclear, missing requirements

Certain diagrams become part of the spec.

IBM Engineering / © 2024 IBM Corporation

Examples - Can Al do the Job?

IBM Enginecring Requirements Maragement DOORS Next (frm)

Aviary

Project Deshboard Artifacts Reviews Reports

granite:
vohicle (
ncluding basic arcraft &
has a maxdmum
tme of at east 3

he Hummingbird is an unmanned aerial
V) that is designed for various &g
ity and target Yracking. It
fance of at least 40 miles, a fight
s, and can reach speeds of up to 40
et The Husmmingbind is equipped with an and
safety light, and can rotate independently in any direction
R also has the abiity %0 rack a designated target and re-
#2qUFe & lost Lrget within 15 seconds. The UAV is

¢ 10 the plot

“ o,

.

¢ e of reg O
controlier, and can land automatically when
COMIMUK 0N Is lost. Addtionally, the Mummingbird
SUPPONS Wirgloss COmMMUNICAton with the pict controller
v up 10 4 separate viewers, and can slon identified
errors and faults. The camera functionalty includes a
720p resokssion feed, adustable focus and zoom, and the
Aty 10 point straght down of 10 60% from vertical in
arry divection. The Hummingbied power management
system inchudes automatc landing

tng its alstude ar

IBM Engineering / © 2024 IBM Corporation

Hummingbird System Requirements

Basic Aircraft Functionality
The Hummingbird maximum flight distance shall be at least 40 miles.
The Hummingbird flight time shall be at least 3 hours.
The Hummingbird shall fly at speed of 40 mph.
The Hummingbird shall be able to attain an altitude of at least 400m
The Hummingbird shall have an antenna

The Hummingbird shall be able to maintain attitude within 5 degrees of ar
steady winds of up to 20 mph or 20 degrees in the presence of irregular w

Stable Diffusion w prompt:
People looking at computer with requirements

Smart DOORS Next Copilot for Requirements Engineers PoC

Hi! I'm KLH Copilot, a virutal
assistant.
How can I help you?

Toitamn 1OM wations

IBM Engineering / © 2024 IBM Corporatic

—
Al

1w UM mateae

Al =

farl Output Ip
¥ nd &
Bracket_C-class a Bracket_v2023
EU
pu - 1he
Al
'Al ments and templates
["; Output
ults
Ld T Contest 1 Contont 2 Crxplanation Recommended
OCe > rpcket_v203 actions
wht
o 1o
St

The Future ?

GenAl alone cannot replace engineers, snsggysif_ﬁz.?ng
but engineers equipped with GenAl will VS. DUMMIES

surpass those without it.

IBM Engineering / © 2024 IBM Corporation

Questions answered

» What is Requirements Engineering ?
» DoesAlhelp? \/
* Can Al generate Requirements ? \/
* Does Modeling help ? 4/
 What is MBSE and how does it relate to Requirements Engineering ?
 What is a MBSE best-practice? \/
* Can Al generate Models ? \/

» Do Models generate Requirements ? \/

IBM Engineering / © 2024 IBM Corporation

Thank You

Peter Schedl
peter.schedl@de.ibm.com

Upcoming Events

Automotive Day Conference - Minchen
TdSE - Leipzig

Further information:

IBM Engineering Lifecycle Management Automotive Compliange
IBM Engineering Lifecycle Management Overview
IBM Engineering Lifecycle Management Interactive Tour

Iz

-
—
—

\ -
=
© Copyright IBM Corporation 2024. All rights reserved. The information contained in these materials is provided for informational purposes only, a

is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to change
withdrawal, and represent only goals and objectives. IBM, the IBM logo, and ibm.com are trademarks of IBM Corp., registered in many jurisdictions

d
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM tradeh{ks is available at %

Copyright and trademark information.

IBM Engineering / © 2024 IBM Corporation -\\\

https://www.ibm.com/legal/copytrade
https://www.ibm.com/products/engineering-automotive-compliance
https://www.ibm.com/products/engineering-lifecycle-management
https://www.ibm.com/internet-of-things/learn/elm-interactive/
https://www.sodiuswillert.com/de/blog/automotive-day-conference
https://www.tdse.org/

