
Digital Engineering

Requirements to Systems Engineering
with HarmonyMBE

Peter Schedl
Program Manager
IBM Engineering Lifecycle Management
peter.schedl@de.ibm.com

IBM Engineering / © 2023 IBM Corporation

Questions to be answered

IBM Engineering / © 2023 IBM Corporation

• What is Requirements Engineering ?

• Does Modeling help ?

• How much Modeling do I need?

• What is MBSE and how does it relate to Requirements Engineering ?

• What is HarmonyMBE ?

• How to valdidate Requirements - or - what is this ?

Requirements Definition and Management

Requirements Engineering involves:

– Requirements elicitation – gathering requirements from stakeholders/customers

– Requirements analysis and negotiation – check clarity, completeness, resolve issues

– Requirements specification – document with text, maybe with use cases and scenarios

– Functional analysis

– Requirements validation

– Requirements management – continuous activity,
traceability, change handling

IBM Engineering / © 2023 IBM Corporation

Requirements Challenges

Misunderstood requirements by stakeholders and engineers

Poorly expressed requirements

Misunderstanding or omission by development

Missed test coverage

Requirement change impact misunderstandings

Little reuse

IBM Engineering / © 2023 IBM Corporation

RQA: AI based quality checker

Requirements Challenges

Misunderstood requirements by stakeholders and engineers

Poorly expressed requirements

Misunderstanding or omission by development

Missed test coverage

Requirement change impact misunderstandings

Little reuse

IBM Engineering / © 2023 IBM Corporation

ChatGPT example

“Ok. That’s what we need to do:
Thread A will pass event X to thread B and that will
change B’s state to Running from what it was before
which was Idle. When B changes to Running it will
send back an event Y to A and then wait for 2 second
and then go back to Idle. Thread A will have started
in Idle also and will go to Run after B sends back
event Z which happens after the 2 seconds before
going to Idle. All this should happen in less then 5
seconds.”

Functional Requirements:
1.Thread A shall pass event X to Thread B.
2.Upon receiving event X, Thread B shall change its state from Idle to Running.
3.After changing to Running state, Thread B shall send event Y to Thread A.
4.Thread B shall wait for 2 seconds after sending event Y.
5.After waiting for 2 seconds, Thread B shall change its state from Running to Idle.
6.Thread A shall start in Idle state.
7.After receiving event Y from Thread B, Thread A shall change its state from Idle to Running.
8.Thread A shall wait for event Z before changing its state to Idle.
9.Event Z shall be sent by Thread B after waiting for 2 seconds in Running state.
10.The entire process of passing event X from Thread A to Thread B, changing states, waiting, and passing event Z back to Thread
Non-Functional Requirements:
1.The system shall ensure that the communication between Thread A and Thread B is reliable and accurate.
2.The system shall ensure that the time delay between sending events, changing states, and waiting is minimized to ensure the t
3.The system shall be designed to handle multiple instances of the process simultaneously without compromising the reliability

Requirements Challenges

Misunderstood requirements by stakeholders and engineers

Poorly expressed requirements

Misunderstanding or omission by development

Missed test coverage

Requirement change impact misunderstandings

Little reuse

Complexity is the biggest challenge facing organizations today!

“Ok. That’s what we need to do:
Thread A will pass event X to thread B and that will
change B’s state to Running from what it was before
which was Idle. When B changes to Running it will
send back an event Y to A and then wait for 2 second
and then go back to Idle. Thread A will have started
in Idle also and will go to Run after B sends back
event Z which happens after the 2 seconds before
going to Idle. All this should happen in less then 5
seconds.”

IBM Engineering / © 2023 IBM Corporation

Modeling in Requirements Engineering

Requirements Engineering involves:

– Requirements elicitation

– Requirements analysis and negotiation

– Requirements specification

– Functional analysis

– Requirements validation

– Requirements management

Past

Specifications

Interface requirements

System design

Analysis & trade-off

Test plans

Moving from manual and textual methods to an automated, visual approach

Future

UserUser

AdminAdmin AccessPointAccessPoint

CameraCamera

Security System

Uc3ConfigureSecurity
System

Uc2Control Exit

Uc1Control Entry

readSecurityCard

User

validateSecurityCard

[CardStatus Valid][CardStatus Valid]

scanBiometricData

User [else][else]

authenticateBiometricData

[else]

flagBiometricScanFailure

[else]

[else][else]

[else]

flagSecurityCardFailure

[else]

[else][else]

[BiometricData Authenticated]

logEntryData

[BiometricData Authenticated]

[BsFailCount==3]

disableUserAccount

Admin

[BsFailCount==3]

[ScFailCount==3][ScFailCount==3]

displayCardStatus

[Timeout BiometricScan][Timeout BiometricScan]

displayAuthenticationStatus

logAccountData

alarm

unlockAccesspoint
«MessageAction»

AccessPoint

lockAccesspoint
«MessageAction»

AccessPoint [Timeout Unlocked][Timeout Unlocked]resetAlarm

Admin

[else][else]
takePicture

«MessageAction»

Camera

[First Request][First Request]

User CameraAccessPointUc_Uc1ControlEntry

message_0()
readSecurityCard()

message_1()
validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

message_2()
scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

message_3()

message_4()

message_5()

message_6()

message_0()
readSecurityCard()

message_1()
validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

message_2()
scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

message_3()

message_4()

message_5()

message_6()

Uc1ControlEntryCtrl

WaitForEntryRequest

UnlockingAndLockingAccessPoint

reqTakeSnapshot to pCamera

reqReadSecurityCard/
readSecurityCard();

reqProcessAlert("User Access Disabled") to pAdmin

ProcessingSecurityCardData

Fail3Times

ProcessingBiometricData

Failed3TimesBsTimeoutAuthenticated

[CardStatus=="Valid"]

A

evAccessPointLocked

A

/disableUserAccount();
logAccountData();

A

WaitForResetAlarm

reqResetAlarm/
resetAlarm();

reqReadSecurityCard/
readSecurityCard();

[CardStatus=="Valid"]

evAccessPointLocked

/disableUserAccount();
logAccountData();

reqResetAlarm/
resetAlarm();

“Ok. That’s what we need to do:
Thread A will pass event X to thread B and that will
change B’s state to Running from what it was before
which was Idle. When B changes to Running it will
send back an event Y to A and then wait for 2 second
and then go back to Idle. Thread A will have started
in Idle also and will go to Run after B sends back
event Z which happens after the 2 seconds before
going to Idle. All this should happen in less then 5
seconds.”

IBM Engineering / © 2023 IBM Corporation

Why Modeling?

Manage complexity
– Complicated applications need a visual plan

Simplify and abstract ! essential aspects of a system
– Increase understanding of requirements

Enhance communication
– Common language promotes common understanding across disciplines

Reduce risk
– Model execution increases knowledge and reduces uncertainty and risk

Provide traceability
– Models document what you have done
IBM Engineering / © 2023 IBM Corporation

Modeling in Requirements Engineering

Requirements Engineering involves:

– Requirements elicitation

– Requirements analysis and negotiation

– Requirements specification – use cases and scenarios for describing user interactions

– Functional analysis – functional flows, interface definition, documented rationale

– Requirements validation – testing of requirements through model execution

– Requirements management
2 Functional Requirements

2.1 Power car

2.1.1 Move car

2.1.1.1 Move forwards

The car shall be able to move forwards at all speeds from 0 to 200 kilometers per hour on
standard flat roads with winds of 0 kilometers per hour, w ith 180 BHP.

2.1.1.2 Move backwards

The car shall be able to move backwards to a maximum speed of 20 Kilometers per hour on
standard flat roads with winds of 0 kilometers per hour, w ith 180 BHP.

2.1.2 Accelerate car

The car shall be able to accelerate from 0 to 100 Kilometers per hour in 10 seconds on
standard flat roads with winds of 0 kilometers per hour.

The car shall be able to accelerate from 100 to 150 kilometers per hour at a rate of 5
kilometers per second on standard flat roads with winds of 0 kilometers per hour.

The car shall be able to accelerate from 150 to 200 kilometers per hour at a rate of 3
kilometers per second on standard flat roads with winds of 0 kilometers per hour.

2.2 Control car

2.2.1 Switch on car

The car shall be able to discrim inate which authorized people shall be able to switch on and
operate the car.

2.2.2 Control speed

The car shall have a foot mechanism to control the speed of the car.

The speed control shall be infinitely variable from zero to maximum speed.

IBM Engineering / © 2023 IBM Corporation

Improve Requirements specification by just adding “Diagrams”

IBM Engineering / © 2023 IBM Corporation

Fully integrated (like textual requirement)

Offers rich notations

Not a formal model !

IBM’s Model Based Systems Engineering (MBSE) Solution

MBSE is a standards based Systems Engineering practice that incorporates:

– Modeling language – SysML

– Modeling method – Harmony Systems Engineering Practices

– Modeling tool – Rhapsody for Systems Engineers & Rhapsody Model Manager

Rhapsody

implements

The Model governs

leverages

uses

describes

manages

HarmonyMBEPractices

Requirements ?

IBM Engineering / © 2023 IBM Corporation

IBM’s Model Based Systems Engineering (MBSE) Solution

MBSE is a standards based Systems Engineering practice that incorporates:

– Modeling language – SysML

– Modeling method – Harmony Systems Engineering Practices

– Modeling tool – Rhapsody for Systems Engineers & Rhapsody Model Manager

– Requirements management tool – DOORS Next Generation

DOORS Rhapsody

implements

The Model governs

leverages

uses

describes

manages

HarmonyMBEPractices

IBM Engineering / © 2023 IBM Corporation

IBM’s Model Based Systems Engineering (MBSE) Solution

MBSE is a standards based Systems Engineering practice that incorporates:

– Modeling language – SysML

– Modeling method – Harmony Systems Engineering Practices incl. Ticket System for Guidance & Com.

– Modeling tool – Rhapsody for Systems Engineers & Rhapsody Model Manager

– Requirements management tool – DOORS Next Generation

DOORS Rhapsody Workflow Mgr

implements

The Model governs

leverages

uses

describes

manages

HarmonyMBEPractices

IBM Engineering / © 2023 IBM Corporation

Modeling in Requirements Engineering
HarmonyMBE Practice provides Guidance & Automation

Model Based Systems Engineering complements
traditional requirements analysis techniques

– during Requirements Analysis, we organize
requirements into functional groups (use cases)

– during Functional Analysis, we identify system
functions and explore the system’s dynamic
behavior using activity diagrams and model
execution

– during Architectural Design, system operations
are allocated to decomposed Logical Architecture

– Finally either direct Hand-Off to the engineering
teams or first map to a Technical Architecture

IBM Engineering / © 2023 IBM Corporation

IBM Engineering / © 2023 IBM Corporation

HarmonyMBE Workflow

Entry Level

HarmonyMBE Workflow - Can be used with any Tool
– Integrated in Tool Rhapsody

HarmonyMBE simplifies MBSE

Reduced Menu’s & Toolbars

Model creation Support (e.g. Activity Diagram Editor)

Auto generation of ports, interfaces,
delegation ports, connectors and diagrams

New architecture layers are generated
on demand
– Allocation & Re-use of blocks, ports and

interfaces
IBM Engineering / © 2023 IBM Corporation

Harmony MBE Benefits

IBM Engineering / © 2023 IBM Corporation

Proven Method with simplified Tool UI and automation

Only create core information: Use Cases, Activities and Subsystems (BDD) incl. State Charts

Get verified System Architecture incl. Interfaces (ICD) & Test Scenarios

Linked to Requirements & Tasks

Is my Model correct ?

„How do you validate that you have a ‚useful‘ model?

IBM Engineering / © 2023 IBM Corporation

Continuously validate and verify thru Model Execution

Once the system behavior has been captured it can be verified through execution
– The Sequence Diagrams should be used as the basis for stimulating the model and to record the test run

Advantages of execution
– Helps eliminate bugs and design flaws
– Helps build a robust system as unhandled

conditions are exposed
– Helps test interfaces…Reducing integration

issues further down
– Helps test for regressions
– Verified Test Cases can be handed down the life-cycle

IBM Engineering / © 2023 IBM Corporation

Requirements Revisited – Modellers Point of View

Functional Requirements have been traced to Model Elements
like Use Cases, Blocks, Operations, Interface Data

Non-functional requirements are traced to Subsystem Blocks

Visualize the Traceability in a Matrix View

When a Requirement changes – the impact of that change may be analyzed
IBM Engineering / © 2023 IBM Corporation

Requirements traced to Model Artefacts – RE Point of View

IBM Engineering / © 2023 IBM Corporation

Requirements tight integration with Models

When a Requirement changes – the impact of that change may be analyzed

DOORS Rhapsody

Join also my other
talk about

Importance of
Traceability

Summary

Model Based Systems Engineering (MBSE) complements traditional requirements definition and
management techniques
– Work at appropriate level of abstraction graphically
– Can be scaled from light “drawing” to full MBSE incl. model simulation
– Continuously validate and verify
– Provide detailed traceability

IBM provides with HarmonyMBE a SysML-based Systems Engineering practice library with application
guidance

Functional Analysis …
– is a Requirements Engineering activity
– emphasizes the transformation of functional system requirements into a coherent description of system functions
– improves upon the quality of system requirements

IBM Engineering / © 2023 IBM Corporation

Thank You

© Copyright IBM Corporation 2023. All rights reserved. The information contained in these materials is provided for informational purposes only, and
is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to change or
withdrawal, and represent only goals and objectives. IBM, the IBM logo, and ibm.com are trademarks of IBM Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available at
Copyright and trademark information.

IBM Engineering / © 2023 IBM Corporation

Peter Schedl
peter.schedl@de.ibm.com

Further information:
IBM Engineering Lifecycle Management Automotive Compliance
IBM Engineering Management Overview

https://www.ibm.com/legal/copytrade
https://www.ibm.com/products/engineering-automotive-compliance
https://www.ibm.com/products/engineering-lifecycle-management

